Click on the links for resources on each topic.
2008-J-2:

- Nuclear and Radiation Chemistry
- Atomic Electronic Spectroscopy
- Bonding in $\mathrm{H}_{2}-\mathrm{MO}$ theory
- Bonding in $\mathrm{O}_{2}, \mathrm{~N}_{2}, \mathrm{C}_{2} \mathrm{H}_{2}, \mathrm{C}_{2} \mathrm{H}_{4}$ and $\mathrm{CH}_{2} \mathrm{O}$
- Band Theory - MO in Solids
- Types of Intermolecular Forces

2008-J-3:

- Nuclear and Radiation Chemistry

2008-J-4:

- Bonding in $\mathrm{O}_{2}, \mathrm{~N}_{2}, \mathrm{C}_{2} \mathrm{H}_{2}, \mathrm{C}_{2} \mathrm{H}_{4}$ and $\mathrm{CH}_{2} \mathrm{O}$
- Shape of Atomic Orbitals and Quantum Numbers
- Filling Energy Levels in Atoms Larger than Hydrogen

2008-J-5:

- Lewis Structures
- VSEPR

2008-J-6:

- Wave Theory of Electrons and Resulting Atomic Energy Levels

2008-J-7:

- Polar Bonds
- Types of Intermolecular Forces
- Wave Theory of Electrons and Resulting Atomic Energy Levels

2008-J-8:

- Thermochemistry
- First and Second Law of Thermodynamics

2008-J-9:

- Nitrogen in the Atmosphere

2008-J-10:

- Thermochemistry
- First and Second Law of Thermodynamics

2008-J-11:

- Thermochemistry
- First and Second Law of Thermodynamics

2008-J-13:

- Electrochemistry

2008-J-14:

- Electrochemistry
- First and Second Law of Thermodynamics

CHEMISTRY 1A (ADVANCED) - CHEM1901

CHEMISTRY 1A (SPECIAL STUDIES PROGRAM) - CHEM1903

CONFIDENTIAL

FIRST SEMESTER EXAMINATION

JUNE 2008
TIME ALLOWED: THREE HOURS
GIVE THE FOLLOWING INFORMATION IN BLOCK LETTERS

FAMILY NAME		SID	
OTHER		TABBER	
NAMES		NUMBER	

INSTRUCTIONS TO CANDIDATES

- All questions are to be attempted. There are 23 pages of examinable material.
- Complete the written section of the examination paper in INK.
- Read each question carefully. Report the appropriate answer and show all relevant working in the space provided.
- The total score for this paper is 100 . The possible score per page is shown in the adjacent tables.
- Each new short answer question begins with a \bullet.
- Electronic calculators, including programmable calculators, may be used. Students are warned, however, that credit may not be given, even for a correct answer, where there is insufficient evidence of the working required to obtain the solution.
- Numerical values required for any question, standard electrode reduction potentials, a Periodic Table and some useful formulas may be found on the separate data sheets.
- Pages 14, 21, 23 and 28 are for rough working only.

OFFICIAL USE ONLY

Short answer section

Page	Marks			Marker
	Max	Gained		
12	6			
13	7			
15	7			
16	3			
17	4			
18	6			
19	6			
20	3			
22	6			
24	4			
25	5			
26	4			
27	6			
Total	67			

- In the spaces provided, explain the meaning of the following terms. You may use an

Marks
6
(a) antibonding molecular orbital
(b) emission spectroscopy
(c) half-life
(d) band gap
(e) dispersion interaction
(f) a triple bond

- Explain why a sustained fission chain reaction can only occur when a critical mass is prepared.
- The half life of ${ }^{3} \mathrm{H}$ is 12 years. Calculate how long it takes (rounded to the nearest year) for the activity of a sample of tritium to have dropped to 0.1% of its original value.

Answer:

- Consider the following list of unstable isotopes and their decay mechanisms.

$$
\begin{array}{ll}
{ }_{17}^{33} \mathrm{Cl} \rightarrow{ }_{+1}^{0} \mathrm{e}+{ }_{16}^{33} \mathrm{~S} & \text { half-life }=2.5 \mathrm{~s} \\
{ }_{15}^{32} \mathrm{P} \rightarrow{ }_{-1}^{0} \mathrm{e}+{ }_{16}^{32} \mathrm{~S} & \text { half-life }=14.3 \text { days } \\
{ }_{82}^{199} \mathrm{~Pb} \rightarrow{ }_{+1}^{0} \mathrm{e}+{ }_{81}^{199} \mathrm{Tl} & \text { half-life }=90 \text { minutes } \\
{ }_{7}^{13} \mathrm{~N} \rightarrow{ }_{+1}^{0} \mathrm{e}+{ }_{6}^{13} \mathrm{C} & \text { half-life }=10 \text { minutes }
\end{array}
$$

From this list, select the isotope that best satisfies the following requirements.
Provide a reason for your choice in each case.

Requirement	Isotope	Reason for choice
Isotope used in medical imaging		
Decay represents the transformation of a neutron into a proton		
The isotope with the highest molar activity		

- The electronic energies of the molecular orbitals of homonuclear diatomics from the period starting with Li can be ordered as follows (with energy increasing from left to

Using this ordering by energy of the molecular orbitals, how many unpaired spins do you expect in the ground state configurations of each of $\mathrm{B}_{2}, \mathrm{C}_{2}, \mathrm{~N}_{2}, \mathrm{O}_{2}$ and F_{2} ?

B_{2}	C_{2}	$\mathrm{~N}_{2}$	O_{2}	$\mathrm{~F}_{2}$

Consider the 15 species $\mathrm{X}_{2}^{-}, \mathrm{X}_{2}$ and X_{2}^{+}where X is $\mathrm{B}, \mathrm{C}, \mathrm{N}, \mathrm{O}$ or F . What is the maximum bond order found among these 15 species and which molecules or ions exhibit this bond order?

What is the minimum bond order found among these 15 species and which molecules or ions exhibit this bond order?

- Imagine a Universe X in which electrons had three possible spin states (i.e. with electron spin quantum numbers $-1,0$ and +1) instead of the two they have in our are identical to those in our universe.

What are the atomic numbers of the first two noble gases in Universe X?

Write down the ground state electron configuration of the atom with atomic number 14 in Universe X.

How would the energy difference between the $2 s$ and $2 p$ orbitals in multi-electron atoms compare between our universe and Universe X? Give a brief explanation of your answer.

- Consider the molecule whose structure is shown below. Complete the table concerning the atoms \mathbf{A}, \mathbf{B} and \mathbf{C} indicated by the arrows.

Selected atom	Number of lone pairs about the selected atom	Number of σ-bonds associated with the selected atom	Geometry of σ-bonds about the selected atom
A			
B			
C			

THE REMAINDER OF THIS PAGE IS FOR ROUGH WORKING ONLY.

- Moseley discovered experimentally in 1913 that the atomic number, Z, of an element is inversely proportional to the square root of the wavelength, λ, of fluorescent X -rays emitted when an electron drops from the $n=2$ to the $n=1$ shell.

$$
\text { i.e. } \frac{1}{\sqrt{\lambda}}=k Z
$$

Derive an expression for the constant of proportionality, k, for a hydrogen-like atom which would allow the value of k to be theoretically calculated.

- Describe two physical properties of liquid or solid N_{2} that distinguish it from liquid or solid $\mathrm{H}_{2} \mathrm{O}$.

Marks
2
stop the electrons from spiralling into the nucleus. Briefly explain how the quantum theory of the electrons resolved this problem.

- From the list of molecules below, select all the polar molecules and list them from left to right in order of increasing molecular dipole moment.

$$
\mathrm{BF}_{3}, \mathrm{CH}_{3} \mathrm{Cl}, \mathrm{CH}_{3} \mathrm{~F}, \mathrm{CO}_{2}, \mathrm{CF}_{4}, \mathrm{NF}_{3}
$$

- Write a balanced equation for (i) the explosive decomposition, and (ii) the combustion in air, of TNT, $\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{~N}_{3} \mathrm{O}_{6}(\mathrm{~s})$.

Marks
6
(i) \qquad
(ii)

What is the essential difference between these two processes?

What is the increase in the number of moles of gas (per mole of TNT consumed) for each of these two processes?
(i)

Which of these two processes releases more energy into the surroundings?
Data: $\quad \Delta_{\mathrm{f}} H^{\circ}(\mathrm{TNT})=6.9 \mathrm{~kJ} \mathrm{~mol}^{-1}$
$\Delta_{\mathrm{f}} H^{\circ}(\mathrm{CO}(\mathrm{g}))=-111 \mathrm{~kJ} \mathrm{~mol}^{-1}$
$\Delta_{\mathrm{f}} H^{\circ}\left(\mathrm{CO}_{2}(\mathrm{~g})\right)=-393 \mathrm{~kJ} \mathrm{~mol}^{-1}$
$\Delta_{\mathrm{f}} H^{\circ}\left(\mathrm{H}_{2} \mathrm{O}(\mathrm{g})\right)=-242 \mathrm{~kJ} \mathrm{~mol}^{-1}$

Answer:

Estimate the surface temperature of the star Arcturus from its emission spectrum shown in the figure below.

Marks
3

\square
On the figure above, sketch the broad emission spectrum of a red giant, clearly showing the emission maximum and the overall intensity.

- A calorimeter containing 300.0 mL of water at $25^{\circ} \mathrm{C}$ was calibrated as follows. increased by $7.5^{\circ} \mathrm{C}$. Calculate the heat capacity of the empty calorimeter. The specific heat of water is $4.184 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~g}^{-1}$.

A solution containing $0.040 \mathrm{~mol} \mathrm{Ag}^{+}(\mathrm{aq})$ was mixed with a second solution containing 0.050 mole $\mathrm{Br}^{-}(\mathrm{aq})$ in this calorimeter, causing $\mathrm{AgBr}(\mathrm{s})$ to precipitate. The temperature increased by $2.4^{\circ} \mathrm{C}$. Given the solubility product constant is $K_{\text {sp }}(\mathrm{AgBr})=5 \times 10^{-13} \mathrm{M}^{2}$, calculate the equilibrium concentrations of $\mathrm{Ag}^{+}(\mathrm{aq})$ and $\mathrm{Br}^{-}(\mathrm{aq})$ present in the final solution of volume 320 mL .

Calculate the enthalpy of solution of $\mathrm{AgBr}(\mathrm{s})$.
\square

- Use the figure below to help answer the following.

Write a balanced equation for the smelting of one of these metal oxides with coke in which a major product is CO_{2}. Give the approximate temperature range over which this reaction is spontaneous and state what happens outside this temperature range.

Over what temperature range can ZnO be reduced by Fe ? What other metal could be used instead to increase the temperature range in which metallic Zn was produced?

Estimate the partial pressure of CO that would be expected at equilibrium in the smelting of ZnO by coke at 1500 K .

Marks
5

Metallic copper is produced by smelting chalcopyrite, $\mathrm{CuFeS}_{2}(\mathrm{~s})$, directly in oxygen to produce iron oxides and SO_{2}. Write a balanced equation for this reaction, and sketch the $\ln K_{\mathrm{p}}$ versus temperature curve for $\mathrm{Cu}-\mathrm{CuO}$ on the diagram on page 24. Clearly label the curve you have drawn.

- A voltaic cell consists of $\mathrm{Zn}^{2+} / \mathrm{Zn}$ and $\mathrm{Cu}^{2+} / \mathrm{Cu}$ half cells with initial concentrations of $\left[\mathrm{Zn}^{2+}\right]=1.00 \mathrm{M}$ and $\left[\mathrm{Cu}^{2+}\right]=0.50 \mathrm{M}$. Each half cell contains 1.00 L of solution.

What is the voltage of the cell at $20^{\circ} \mathrm{C}$ after equilibrium has been reached?
What are the concentrations of the $\mathrm{Zn}^{2+}(\mathrm{aq})$ and the $\mathrm{Cu}^{2+}(\mathrm{aq})$ ions at $20^{\circ} \mathrm{C}$ after equilibrium has been reached?

| |
| :--- | :--- |
| |
| $\left.\mathrm{Zn}^{2+}\right]_{\mathrm{eq}}=$ |

- Judging by the electrochemical series of standard reduction potentials, $\mathrm{H}^{+}(\mathrm{aq})$ should be reduced to $\mathrm{H}_{2}(\mathrm{~g})$ by exposure to metallic Fe , which is oxidised to $\mathrm{Fe}^{2+}(\mathrm{aq})$. Why do we not see water on iron spontaneously generating hydrogen gas?
\square
- State the Second Law of Thermodynamics, and explain how an exothermic process in a closed system changes the entropy of the surroundings.
\square
The standard enthalpy and entropy of solution of poly(oxyethylene) in water are $\Delta H^{\circ}=-7.8 \mathrm{~kJ} \mathrm{~mol}^{-1}$ and $\Delta S^{\circ}=-31 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$. Use these data to predict whether the solubility of poly(oxyethylene) in water increases or decreases when the solution is warmed.

CHEM1901 - CHEMISTRY 1A (ADVANCED)

CHEM1903 - CHEMISTRY 1A (SPECIAL STUDIES PROGRAM)

DATA SHEET

Physical constants
Avogadro constant, $N_{\mathrm{A}}=6.022 \times 10^{23} \mathrm{~mol}^{-1}$
Faraday constant, $F=96485 \mathrm{C} \mathrm{mol}^{-1}$
Planck constant, $h=6.626 \times 10^{-34} \mathrm{~J} \mathrm{~s}$
Speed of light in vacuum, $c=2.998 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}$
Rydberg constant, $E_{\mathrm{R}}=2.18 \times 10^{-18} \mathrm{~J}$
Boltzmann constant, $k_{\mathrm{B}}=1.381 \times 10^{-23} \mathrm{~J} \mathrm{~K}^{-1}$
Permittivity of a vacuum, $\varepsilon_{0}=8.854 \times 10^{-12} \mathrm{C}^{2} \mathrm{~J}^{-1} \mathrm{~m}^{-1}$
Gas constant, $R=8.314 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$

$$
=0.08206 \mathrm{~L} \mathrm{~atm} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}
$$

Charge of electron, $e=1.602 \times 10^{-19} \mathrm{C}$
Mass of electron, $m_{\mathrm{e}}=9.1094 \times 10^{-31} \mathrm{~kg}$
Mass of proton, $m_{\mathrm{p}}=1.6726 \times 10^{-27} \mathrm{~kg}$
Mass of neutron, $m_{\mathrm{n}}=1.6749 \times 10^{-27} \mathrm{~kg}$

Properties of matter
Volume of 1 mole of ideal gas at 1 atm and $25^{\circ} \mathrm{C}=24.5 \mathrm{~L}$
Volume of 1 mole of ideal gas at 1 atm and $0^{\circ} \mathrm{C}=22.4 \mathrm{~L}$
Density of water at $298 \mathrm{~K}=0.997 \mathrm{~g} \mathrm{~cm}^{-3}$

Conversion factors

$\begin{array}{ll}1 \mathrm{~atm}=760 \mathrm{mmHg}=101.3 \mathrm{kPa} & 1 \mathrm{Ci}=3.70 \times 10^{10} \mathrm{~Bq} \\ 0{ }^{\circ} \mathrm{C}=273 \mathrm{~K} & 1 \mathrm{~Hz}=1 \mathrm{~s}^{-1} \\ 1 \mathrm{~L}=10^{-3} \mathrm{~m}^{3} & 1 \text { tonne }=10^{3} \mathrm{~kg} \\ 1 \AA=10^{-10} \mathrm{~m} & 1 \mathrm{~W}=1 \mathrm{~J} \mathrm{~s}^{-1} \\ 1 \mathrm{eV}=1.602 \times 10^{-19} \mathrm{~J} & \end{array}$

Decimal fractions

Fraction	Prefix	Symbol
10^{-3}	milli	m
10^{-6}	micro	μ
10^{-9}	nano	n
10^{-12}	pico	p

Decimal multiples Multiple Prefix Symbol 10^{3} kilo k $10^{6} \quad$ mega M
$10^{9} \quad$ giga $\quad G$

CHEM1901 - CHEMISTRY 1A (ADVANCED)

CHEM1903 - CHEMISTRY 1A (SPECIAL STUDIES PROGRAM)

Standard Reduction Potentials, E ${ }^{\circ}$

Reaction
$\mathrm{Co}^{3+}(\mathrm{aq})+\mathrm{e}^{-} \rightarrow \mathrm{Co}^{2+}(\mathrm{aq})$
$\mathrm{Ce}^{4+}(\mathrm{aq})+\mathrm{e}^{-} \rightarrow \mathrm{Ce}^{3+}(\mathrm{aq})$
$\mathrm{MnO}_{4}^{-}(\mathrm{aq})+8 \mathrm{H}^{+}(\mathrm{aq})+5 \mathrm{e}^{-} \rightarrow \mathrm{Mn}^{2+}(\mathrm{aq})+4 \mathrm{H}_{2} \mathrm{O}$
$\mathrm{Au}^{3+}(\mathrm{aq})+3 \mathrm{e}^{-} \rightarrow \mathrm{Au}(\mathrm{s})$
$\mathrm{Cl}_{2}+2 \mathrm{e}^{-} \rightarrow 2 \mathrm{Cl}^{-}(\mathrm{aq})$
$\mathrm{O}_{2}+4 \mathrm{H}^{+}(\mathrm{aq})+4 \mathrm{e}^{-} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}$
$\mathrm{Pt}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Pt}(\mathrm{s})$
E° / V
$+1.82$
+1.72
$+1.51$
$+1.50$
+1.36
$+1.23$
+1.18
$\mathrm{MnO}_{2}(\mathrm{~s})+4 \mathrm{H}^{+}(\mathrm{aq})+\mathrm{e}^{-} \rightarrow \mathrm{Mn}^{3+}+2 \mathrm{H}_{2} \mathrm{O} \quad+0.96$
$\mathrm{NO}_{3}{ }^{-}(\mathrm{aq})+4 \mathrm{H}^{+}(\mathrm{aq})+3 \mathrm{e}^{-} \rightarrow \mathrm{NO}(\mathrm{g})+2 \mathrm{H}_{2} \mathrm{O}$
$+0.96$
$\mathrm{Pd}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Pd}(\mathrm{s}) \quad+0.92$
$\mathrm{Ag}^{+}(\mathrm{aq})+\mathrm{e}^{-} \rightarrow \mathrm{Ag}(\mathrm{s}) \quad+0.80$
$\mathrm{Fe}^{3+}(\mathrm{aq})+\mathrm{e}^{-} \rightarrow \mathrm{Fe}^{2+}(\mathrm{aq})$
$+0.77$
$\mathrm{Cu}^{+}(\mathrm{aq})+\mathrm{e}^{-} \rightarrow \mathrm{Cu}(\mathrm{s}) \quad+0.53$
$\mathrm{Cu}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Cu}(\mathrm{s}) \quad+0.34$
$\mathrm{Sn}^{4+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Sn}^{2+}(\mathrm{aq}) \quad+0.15$
$2 \mathrm{H}^{+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{H}_{2}(\mathrm{~g})$
$\mathrm{Fe}^{3+}(\mathrm{aq})+3 \mathrm{e}^{-} \rightarrow \mathrm{Fe}(\mathrm{s})$
$\mathrm{Pb}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Pb}(\mathrm{s})$
$\mathrm{Sn}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Sn}(\mathrm{s})$
$\mathrm{Ni}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Ni}(\mathrm{s})$
$\mathrm{Cd}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Cd}(\mathrm{s})$
$\mathrm{Fe}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Fe}(\mathrm{s})$
$\mathrm{Cr}^{3+}(\mathrm{aq})+3 \mathrm{e}^{-} \rightarrow \mathrm{Cr}(\mathrm{s})$
$\mathrm{Zn}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Zn}(\mathrm{s})$
$2 \mathrm{H}_{2} \mathrm{O}+2 \mathrm{e}^{-} \rightarrow \mathrm{H}_{2}(\mathrm{~g})+2 \mathrm{OH}^{-}(\mathrm{aq})$
$\mathrm{Cr}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Cr}(\mathrm{s})$
$\mathrm{Al}^{3+}(\mathrm{aq})+3 \mathrm{e}^{-} \rightarrow \mathrm{Al}(\mathrm{s})$
$\mathrm{Mg}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Mg}(\mathrm{s})$
$\mathrm{Na}^{+}(\mathrm{aq})+\mathrm{e}^{-} \rightarrow \mathrm{Na}(\mathrm{s})$
$\mathrm{Ca}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Ca}(\mathrm{s})$
$\mathrm{Li}^{+}(\mathrm{aq})+\mathrm{e}^{-} \rightarrow \mathrm{Li}(\mathrm{s})$

0 (by definition)
-0.04
-0.13
-0.14
-0.24
-0.40
-0.44
-0.83
-0.89
-1.68

CHEM1901 - CHEMISTRY 1A (ADVANCED)

CHEM1903 - CHEMISTRY 1A (SPECIAL STUDIES PROGRAM)

Useful formulas

Quantum Chemistry	Electrochemistry
$E=h \nu=h c / \lambda$	$\Delta G^{\circ}=-n F E^{\circ}$
$\lambda=h / m v$	Moles of $e^{-}=I t / F$
$E=-Z^{2} E_{\mathrm{R}}\left(1 / n^{2}\right)$	$E=E^{\circ}-(R T / n F) \times 2.303 \log Q$
$\Delta x \cdot \Delta(m v) \geq h / 4 \pi$	$=E^{\circ}-(R T / n F) \times \ln Q$
$q=4 \pi r^{2} \times 5.67 \times 10^{-8} \times T^{4}$	
$4.5 k_{\mathrm{B}} T=h c / \lambda$	$=(R T / n F) \times \ln K$
$T=2.898 \times 10^{6} / \lambda(\mathrm{nm})$	$E=E^{\circ}-\frac{0.0592}{n} \log Q\left(\text { at } 25^{\circ} \mathrm{C}\right)$
Acids and Bases $\begin{aligned} & \mathrm{p} K_{\mathrm{w}}=\mathrm{pH}+\mathrm{pOH}=14.00 \\ & \mathrm{p} K_{\mathrm{w}}=\mathrm{p} K_{\mathrm{a}}+\mathrm{p} K_{\mathrm{b}}=14.00 \\ & \mathrm{pH}=\mathrm{p} K_{\mathrm{a}}+\log \left\{\left[\mathrm{A}^{-}\right] /[\mathrm{HA}]\right\} \end{aligned}$	Gas Laws $\begin{aligned} & P V=n R T \\ & \left(P+n^{2} a / V^{2}\right)(V-n b)=n R T \end{aligned}$
Colligative properties $\begin{aligned} & \pi=\mathrm{c} R T \\ & P_{\text {solution }}=X_{\text {solvent }} \times P_{\text {solvent }}^{\circ} \\ & \mathrm{p}=k \mathrm{c} \\ & \Delta T_{\mathrm{f}}=K_{\mathrm{f}} m \\ & \Delta T_{\mathrm{b}}=K_{\mathrm{b}} m \end{aligned}$	Kinetics $\begin{aligned} & t_{1 / 2}=\ln 2 / k \\ & k=A \mathrm{e}^{-E a / R T} \\ & \ln [\mathrm{~A}]=\ln [\mathrm{A}]_{\mathrm{o}}-k t \\ & \ln \frac{k_{2}}{k_{1}}=\frac{E_{a}}{R}\left(\frac{1}{T_{1}}-\frac{1}{T_{2}}\right) \end{aligned}$
Radioactivity $\begin{aligned} & t_{1 / 2}=\ln 2 / \lambda \\ & A=\lambda N \\ & \ln \left(N_{0} / N_{\mathrm{t}}\right)=\lambda t \end{aligned}$ ${ }^{14} \mathrm{C} \text { age }=8033 \ln \left(A_{0} / A_{\mathrm{t}}\right) \text { years }$	Thermodynamics \& Equilibrium $\begin{aligned} & \Delta G^{\circ}=\Delta H^{\circ}-T \Delta S^{\circ} \\ & \Delta G=\Delta G^{\circ}+R T \ln Q \\ & \Delta G^{\circ}=-R T \ln K \\ & K_{\mathrm{p}}=K_{\mathrm{c}}(R T)^{\Delta n} \end{aligned}$
Miscellaneous $A=-\log \frac{I}{I_{0}}$	Mathematics If $\mathrm{a} x^{2}+\mathrm{b} x+\mathrm{c}=0$, then $x=\frac{-\mathrm{b} \pm \sqrt{\mathrm{b}^{2}-4 \mathrm{ac}}}{2 \mathrm{a}}$
$\begin{aligned} & A=\varepsilon c l \\ & E=-A \frac{e^{2}}{4 \pi \varepsilon_{0} r} N_{\mathrm{A}} \end{aligned}$	$\ln x=2.303 \log x$

PERIODIC TABLE OF THE ELEMENTS

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
1 $\substack{\text { Hypoogen } \\ \mathbf{H} \\ 1.008}$																	$\begin{gathered} \hline 2 \\ \text { неним } \\ \mathbf{H e} \\ 4.003 \\ \hline \end{gathered}$
$\begin{gathered} \hline 3 \\ \text { цгиним } \\ \mathbf{L i} \\ 6.941 \\ \hline \end{gathered}$												$\begin{gathered} \substack{5 \\ \text { Boon } \\ \mathbf{B} \\ 10.81} \end{gathered}$	$\begin{gathered} \hline 6 \\ \text { саввом } \\ \mathbf{C} \\ 12.01 \end{gathered}$	$\begin{gathered} 7 \\ \begin{array}{c} 7 \\ \text { мrtoges. } \\ \mathbf{N} \\ 14.01 \end{array} \end{gathered}$	$\begin{gathered} \hline 8 \\ \text { oxxeen } \\ \mathbf{O} \\ 16.00 \\ \hline \end{gathered}$	$\begin{gathered} 9 \\ \begin{array}{c} \text { fluorne } \\ \mathbf{F} \\ 19.00 \end{array} \end{gathered}$	$\begin{gathered} \hline 10 \\ \text { neow } \\ \mathbf{N e} \\ 20.18 \end{gathered}$
$\begin{gathered} \hline 11 \\ \text { sonum } \\ \mathrm{Na} \\ 22.99 \\ \hline \end{gathered}$	$\begin{gathered} \hline 12 \\ \text { маєаним } \\ \mathbf{M g} \\ 24.31 \\ \hline \end{gathered}$											$\begin{gathered} 13 \\ \text { Aluмñuм } \\ \text { Al } \\ 26.98 \\ \hline \end{gathered}$	$\begin{gathered} \hline 14 \\ \text { sulcow } \\ \text { Si } \\ 28.09 \\ \hline \end{gathered}$	phosphous \mathbf{P} 30.97	$\begin{gathered} \hline 16 \\ \substack{\text { surfur } \\ \text { S } \\ 32.07 \\ \hline \\ \hline} \end{gathered}$	$\begin{gathered} 17 \\ \text { chorne } \\ \text { Cl } \\ 35.45 \\ \hline \end{gathered}$	$\begin{gathered} \hline 18 \\ \text { ARGoN } \\ \mathbf{A r} \\ 39.95 \\ \hline \end{gathered}$
$\begin{gathered} \substack{19 \\ \text { porassum } \\ \mathbf{K}} \\ 39.10 \end{gathered}$	$\begin{gathered} 20 \\ \text { calcum } \\ \text { Ca } \\ 40.08 \end{gathered}$	$\begin{gathered} \hline 21 \\ \text { scanoum } \\ \text { Sc } \\ 44.96 \end{gathered}$	$\begin{gathered} \hline 22 \\ \text { тталим } \\ \mathbf{T i} \\ 47.88 \end{gathered}$	$\begin{gathered} \hline 23 \\ \substack{\text { vaxapum } \\ \mathbf{V} \\ 50.94} \end{gathered}$	$\begin{gathered} 24 \\ \text { chronum } \\ \mathbf{C r} \\ 52.00 \end{gathered}$	25 $\left.\begin{array}{c}\text { manganese } \\ \text { Mn } \\ 54.94 \\ \hline\end{array}\right]$	$\begin{gathered} \hline 26 \\ \text { пrov } \\ \text { Fe } \\ 55.85 \end{gathered}$	$\begin{gathered} \hline 27 \\ \text { соват } \\ \mathbf{C o} \\ 58.93 \\ \hline \end{gathered}$	$\begin{gathered} \hline 28 \\ \text { Nıкк世L } \\ \mathbf{N i} \\ 58.69 \end{gathered}$	$\begin{gathered} \hline 29 \\ \text { coper } \\ \mathbf{C u} \\ 63.55 \\ \hline \end{gathered}$	$\begin{array}{r} \hline 30 \\ \text { zanc } \\ \mathbf{Z n} \\ 65.39 \\ \hline \end{array}$	$\begin{gathered} \hline 31 \\ \text { calluм } \\ \text { Ga } \\ 69.72 \\ \hline \end{gathered}$	32 свRмалıм $\mathbf{G e}$ 72.59	$\begin{gathered} \hline 33 \\ \text { arsenc } \\ \text { As } \\ 74.92 \\ \hline \end{gathered}$	$\begin{gathered} \hline 34 \\ \text { shentum } \\ \text { Se } \\ 78.96 \\ \hline \end{gathered}$		$\begin{gathered} \hline 36 \\ \text { ккенго } \\ \mathbf{K r} \\ 83.80 \\ \hline \end{gathered}$
$\begin{gathered} \hline 37 \\ \text { Rubinum } \\ \mathbf{R b} \\ 85.47 \\ \hline \end{gathered}$	$\begin{gathered} 38 \\ \text { sтвомтим } \\ \mathbf{S r} \\ 87.62 \\ \hline \end{gathered}$	$\begin{gathered} \hline 39 \\ \text { yтtruм } \\ \mathbf{Y} \\ 88.91 \\ \hline \end{gathered}$	$\begin{gathered} 40 \\ \text { zirconum } \\ \mathbf{Z r} \\ 91.22 \\ \hline \end{gathered}$	$\begin{gathered} \hline 41 \\ \text { мовим } \\ \text { Nb } \\ 92.91 \\ \hline \end{gathered}$	42 morvbenum $\mathbf{M o}$ 95.94	$\begin{gathered} \hline 43 \\ \text { тесннтим } \\ \mathbf{T c} \\ {[98.91]} \\ \hline \end{gathered}$	$\begin{gathered} 44 \\ \text { Rонненим } \\ \mathbf{R u} \\ 101.07 \\ \hline \end{gathered}$	$\begin{gathered} \hline 45 \\ \text { енооим } \\ \mathbf{R h} \\ 102.91 \\ \hline \end{gathered}$	$\begin{gathered} \hline 46 \\ \text { райарим } \\ \mathbf{P d} \\ 106.4 \\ \hline \end{gathered}$	$\begin{gathered} \hline 47 \\ \text { sulver } \\ \mathbf{A g} \\ 107.87 \\ \hline \end{gathered}$	$\begin{gathered} \hline 48 \\ \substack{48 \\ \text { canuми } \\ \mathbf{C d} \\ 112.40 \\ \hline} \end{gathered}$	$\begin{gathered} \hline 49 \\ \text { wnoum } \\ \text { In } \\ 114.82 \\ \hline \end{gathered}$	$\begin{gathered} \hline 50 \\ \text { TiN } \\ \text { Sn } \\ 118.69 \\ \hline \end{gathered}$	$\begin{gathered} \hline 51 \\ \text { ANTimovy } \\ \text { Sb } \\ 121.75 \\ \hline \end{gathered}$	$\begin{gathered} \hline 52 \\ \text { тейиим } \\ \mathbf{T e} \\ 127.60 \\ \hline \end{gathered}$	$\begin{gathered} \hline 53 \\ \text { 100NE } \\ \mathbf{I} \\ 126.90 \\ \hline \end{gathered}$	$\begin{gathered} \hline 54 \\ \text { xenow } \\ \mathbf{X e} \\ 131.30 \\ \hline \end{gathered}$
$\begin{gathered} \hline 55 \\ \text { саиsum } \\ \text { Cs } \\ 132.91 \\ \hline \end{gathered}$	$\begin{gathered} \hline 56 \\ \substack{\text { вядгим } \\ \mathbf{B a} \\ 137.34 \\ \hline} \end{gathered}$	57-71	$\begin{gathered} \hline 72 \\ \text { нағним } \\ \mathbf{H f} \\ 178.49 \end{gathered}$	$\begin{gathered} \hline 73 \\ \text { талтаим } \\ \mathbf{T a} \\ 180.95 \\ \hline \end{gathered}$	$\begin{gathered} \hline 74 \\ \text { tuncsinn } \\ \mathbf{W} \\ 183.85 \\ \hline \end{gathered}$	$\begin{gathered} \hline 75 \\ \text { Rненим } \\ \mathbf{R e} \\ 186.2 \\ \hline \end{gathered}$	$\begin{gathered} \hline 76 \\ \text { osmum } \\ \text { Os } \\ 190.2 \\ \hline \end{gathered}$	$\begin{gathered} \hline 77 \\ \text { renuw } \\ \mathbf{I r} \\ 192.22 \\ \hline \end{gathered}$		$\begin{gathered} 79 \\ \text { cold } \\ \mathbf{A u} \\ 196.97 \\ \hline \end{gathered}$	$\begin{gathered} \hline 80 \\ \text { MERCury } \\ \mathbf{H g} \\ 200.59 \\ \hline \end{gathered}$	$\begin{gathered} \hline 81 \\ \text { тваним } \\ \mathbf{T l} \\ 204.37 \\ \hline \end{gathered}$	$\begin{gathered} \hline 82 \\ \text { LEAD } \\ \text { Pb } \\ 207.2 \\ \hline \end{gathered}$	$\begin{gathered} \hline 83 \\ \substack{8 \text { вімитн } \\ \mathbf{B i} \\ 208.98 \\ \hline} \end{gathered}$	$\begin{gathered} \hline 84 \\ \text { pooonum } \\ \mathbf{P 0} \\ {[210.0]} \\ \hline \end{gathered}$	$\begin{gathered} \hline 85 \\ \text { Astatine } \\ \mathbf{A t} \\ {[210.0]} \end{gathered}$	$\begin{gathered} 86 \\ \text { Renow } \\ \mathbf{R n} \\ {[222.0]} \\ \hline \end{gathered}$
$\begin{gathered} 87 \\ \text { francum } \\ \text { Fr } \\ {[223.0]} \\ \hline \end{gathered}$	$\begin{gathered} \hline 88 \\ \text { Ranum } \\ \mathbf{R a} \\ {[226.0]} \\ \hline \end{gathered}$	89-103		$\begin{gathered} \hline 105 \\ \text { ровлим } \\ \text { Db } \\ {[262]} \\ \hline \end{gathered}$	$\begin{gathered} \hline 106 \\ \text { sеавовсим } \\ \mathrm{Sg} \\ {[266]} \\ \hline \end{gathered}$	$\begin{gathered} 107 \\ \text { вонким } \\ \mathbf{B h} \\ {[262]} \\ \hline \end{gathered}$	$\begin{gathered} \hline 108 \\ \text { нassum } \\ \mathbf{H s} \\ {[265]} \\ \hline \end{gathered}$	$\begin{gathered} \hline 109 \\ \text { меппевим } \\ \mathbf{M t} \\ {[266]} \\ \hline \end{gathered}$		$\left.\begin{array}{\|c}111 \\ \text { roелтеним } \\ \mathbf{R g} \\ {[272]}\end{array}\right]$							

LANTHANIDES	$\begin{gathered} 57 \\ \text { Lамтнамым } \\ \mathbf{L a} \\ 138.91 \end{gathered}$	$\begin{gathered} \hline 58 \\ \text { cerrum } \\ \mathbf{C e} \\ 140.12 \\ \hline \end{gathered}$	59 praseopxumem $\mathbf{P r}$ 140.91 91	$\begin{gathered} \hline 60 \\ \text { меормим } \\ \text { Nd } \\ 144.24 \\ \hline \end{gathered}$	61 рвометним $\mathbf{P m}$ $[144.9]$ 93	$\begin{gathered} \hline 62 \\ \text { sмманим } \\ \text { Sm } \\ 150.4 \\ \hline \end{gathered}$	$\begin{gathered} 63 \\ \begin{array}{c} 6, \text { Europum } \\ \text { Eu } \end{array} \\ 151.96 \end{gathered}$	$\begin{gathered} \hline 64 \\ \text { canounum } \\ \text { Gd } \\ 157.25 \end{gathered}$	$\begin{gathered} \hline 65 \\ \text { тевним } \\ \mathbf{T b} \\ 158.93 \\ \hline \end{gathered}$	$\begin{gathered} \hline 66 \\ \text { oxsprosum } \\ \text { Dy } \\ 162.50 \end{gathered}$	$\begin{gathered} \hline 67 \\ \text { ноомим } \\ \mathbf{H o} \\ 164.93 \\ \hline \end{gathered}$	$\begin{gathered} \hline 68 \\ \begin{array}{c} \text { еввным } \\ \mathbf{E r} \\ 167.26 \end{array} \end{gathered}$	$\begin{gathered} \hline 69 \\ \text { тичим } \\ \mathbf{T m} \\ 168.93 \\ \hline \end{gathered}$	$\begin{gathered} \hline 70 \\ \substack{\text { мттвним } \\ \mathbf{Y b} \\ 173.04} \end{gathered}$	$\begin{gathered} 71 \\ \text { нипетим } \\ \mathbf{L u} \\ 174.97 \\ \hline \end{gathered}$
ACTINIDES	$\begin{gathered} 89 \\ \text { АстNum } \\ \text { Ac } \\ {[227.0]} \end{gathered}$	$\begin{gathered} \begin{array}{c} 90 \\ \text { тновuм } \\ \text { Th } \\ 232.04 \end{array} \end{gathered}$	91 protactinum Pa $[231.0]$	$\begin{gathered} 92 \\ \text { URANUM } \\ \mathbf{U} \\ 238.03 \end{gathered}$		$\begin{gathered} 94 \\ \begin{array}{c} \text { puturonum } \\ \text { Pu } \\ {[239.1]} \end{array} \end{gathered}$	$\begin{gathered} \begin{array}{c} 95 \\ \text { Аменгтим } \\ \text { Am } \\ {[243.1]} \end{array} \end{gathered}$	$\begin{gathered} 96 \\ \begin{array}{c} \text { curum } \\ \text { Cm } \\ {[247.1]} \end{array} \end{gathered}$	97 Bk [247.1]	$\begin{gathered} 98 \\ \substack{\text { calfornuм } \\ \text { Cf } \\ [252.1]} \end{gathered}$	99 Enstrenum Es $[252.1]$	$\begin{gathered} 100 \\ \begin{array}{c} \text { невпим } \\ \text { Fm } \\ {[257.1]} \end{array} \end{gathered}$	$\begin{gathered} 101 \\ \begin{array}{c} \text { мепрениим } \\ \text { Md } \\ {[256.1]} \end{array} \end{gathered}$	$\begin{gathered} 102 \\ \text { мовним } \\ \text { No } \\ {[259.1]} \end{gathered}$	$\begin{gathered} 103 \\ \text { Lawrencum } \\ \mathbf{L r} \\ {[260.1]} \end{gathered}$

